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Elementary Inequalities

Proofs with characterization of the equality sign are given for the follow-
ing elementary inequalities: Jensen’s Inequality, Generalized Young’s Inequality,
AM-GM Inequality, Hölder’s Inequality, Cauchy-Schwarz Inequality, Minkowski’s
Inequality, Power Means Inequalities, Newton’s Inequalities, and Maclaurin’s In-
equalities.

1.1 Jensen’s Inequality

A function f defined on an interval I is convex if for x, y ∈ I and λ ∈ [0, 1],

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y) .

It is strictly convex if strict inequality holds in this condition whenever x 6= y
and λ ∈ (0, 1).

Jensen’s Inequality. Let f be a convex function on the interval I. Then

f(λ1x1 + · · ·+ λnxn) ≤ λ1f(x1) + · · ·+ λnf(xn) ,

where
x1, x2, · · · , xn ∈ I , λ1, λ2, · · · , λn ∈ [0, 1] ,

When f is strictly convex, let

I1 = {k : λk ∈ (0, 1]} , and I2 = {k : λk = 0}.

The equality sign in this inequality holds if and only if all xk, k ∈ I1, are equal.

We point out that the linear combination
∑

k λkxk belongs to the same inter-
val. WLOG letting x1 ≤ x2 ≤ · · · ≤ xn,

x1 =
(∑

k

λk

)
x1 ≤

∑
k

λkxk ≤
(∑

k

λk

)
xn = xn .

Proof. We prove Jensen’s Inequality by an inductive argument on the number
of points. When n = 2, the inequality follows from the definition of convexity.
Assuming that it is true for n− 1 many points, we show its validity for n many
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points. Let λ1, · · · , λn ∈ (0, 1),
∑

k λk = 1 , and

y =
n−1∑
k=1

λk
1− λn

xk ∈ [x1, xn−1] .

Using first the definition of convexity and then the induction hypothesis,

f(λ1x1 + · · ·+ λnxn) = f((1− λn)y + λnxn)

≤ (1− λn)f(y) + λnf(xn)

= (1− λn)f

(
n−1∑
k=1

λk
1− λn

xk

)
+ λnf(xn)

≤ (1− λn)
n−1∑
k=1

λk
1− λn

f(xk) + λnf(xn)

=
n∑
k=1

λkf(xk) .

The case when λk = 1 for some k is trivial. On the other hand, when some
λk is 0, the inequality reduces to one with fewer λk’s, and its validity comes from
the induction hypothesis.

When f is strictly convex and λk ∈ (0, 1) for all k, it follows straightly from
definition that the strict inequality sign in Jensen’s inequality holds when n =
2, x1 6= x2. In general, let us assume that the strictly inequality sign holds when
x1, · · · , xn−1 are distinct and prove it when x1, · · · , xn are not all equal. For,
when all x1, · · · , xn are distinct, the second ≤ in the above inequalities becomes
< due to the induction hypothesis and hence the strict inequality holds for n.
When some xk’s are equal, we can group the expression

∑n
k=1 λkxk into

∑m
k=1 µkyk

where all yk’s are distinct and m is less than n. In this case the desired result
comes from the induction hypothesis.

The case of equality becomes trivial when some λk equals to 1. When λk = 0
for some k, the inequality is the same as we remove all terms containing λk, k ∈ I2,
from both sides. The rest λk, k ∈ I1, are in (0, 1), so the desired conclusion follows
as before.

Jensen’s inequality asserts there is an inequality associated to every convex
function. As an example, we have

Generalized Young’s Inequality. For ak ∈ (0,∞) and λk ∈ (0, 1) with∑n
k=1 λk = 1,

a1a2 · · · an ≤
ap11
p1

+
ap22
p2

+ · · ·+ apnn
pn

.
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Moreover, the equality sign in this inequality holds if and only if all apkk , k =
1, · · · , n, are equal.

Proof. The function z 7→ ez is strictly convex on (−∞,∞) (use (ez)′′ > 0). Its
associated Jensen’s Inequality takes the form

e
∑

k λkxk ≤
∑
k

λke
xk .

The Generalized Young’s Inequality follows by setting ak = eλkxk and pk = 1/λk.

By taking xk = apkk and pk = n for all k in the Generalized Young’s Inequality,
we recover the inequality on arithmetic and geometric means.

AM-GM Inequality. For xk, k = 1, · · · , n,∈ (0,∞),

(x1x2 · · ·xn)1/n ≤ x1 + x2 + · · ·+ xn
n

.

Moreover, equality sign in this inequality holds if and only if all xk’s are equal.

Jensen’s Inequality concerning convex functions is a parent inequality. In the
next section we use it to prove Hölder’s Inequality.

1.2 Hölder’s Inequality

For a = (a1, · · · , an) ∈ Rn and p ≥ 1, define

‖a‖p =

(
n∑
k=1

|ak|p
)1/p

.

Hölder’s Inequality. For p ≥ 1 and a, b ∈ Rn with ak, bk ≥ 0,

n∑
k=1

akbk ≤ ‖a‖p ‖b‖q ,
1

p
+

1

q
= 1 .

Moreover, the equality sign in this inequality holds if and only if either (a) one of
a, b is the zero vector or (b) both a and b are non-zero vectors and bqk = capk , k =
1, · · · , n, for some positive number c.
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The number q is called conjugate to p if 1/p+ 1/q = 1. Note that q > 1 when
p > 1.

We will present two proofs for this basic inequality.

First Proof When a or b is a zero vector, the inequality becomes equality and
the assertion is trivially satisfied. It suffices to consider the case where a or b is
a non-zero vector. WLOG we assume a 6= (0, · · · , 0) in the following proof.

Apply Young’s Inequality of two variables to each pair of ak, bk and play the
“ε-trick”:

akbk = (εak)(ε
−1bk) ≤

(εak)
p

p
+

(ε−1bk)
q

q
, ε > 0 . (1.1)

Summing up over k
n∑
k=1

akbk ≤
εp

p
‖a‖pp +

ε−q

q
‖b‖qq .

Now we choose ε by the relation

εp‖a‖pp = ε−q‖b‖qq ,

that is,

ε =

(‖b‖qq
‖a‖pp

)1/(p+q)

.

With this ε we find
εp‖a‖pp = ε−q‖b‖qq = ‖a‖p ‖b‖q ,

after some straightforward manipulations. Therefore,

n∑
k=1

akbk ≤
‖a‖p ‖b‖q

p
+
‖a‖p ‖b‖q

q
= ‖a‖p ‖b‖q ,

done.

To settle the equality sign, first it is easy to check directly that equality holds
if b is a scalar multiple of a. On the other hand, observe that in (1.1), for each k,
equality sign holds if and only if either ak = bk = 0 or ak > 0 and εpak = ε−qbqk,
that is bk = εp+qak . Hölder’s Inequality is obtained by summing up all these
inequalities. Therefore, letting J1 = {k : ak = bk = 0} and J2 = {k : ak, bk > 0},
we know that

bqk = capk , c = εp+q > 0 ,

whenever k ∈ J2. But, this relation is also valid for k ∈ J1. We conclude that
the equality sign holds in Hölder’s Inequality when a is a non-zero vector implies
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that bqk = capk, k = 1, · · · , n, for some c > 0.

Second Proof In this proof we assume ak, bk > 0. The reader will have no
difficulty to extend it to ak, bk ≥ 0. Moreover, I leave the proof of the equality
case to you. It is not hard but tedious.

The Jensen’s Inequality associated to the strictly convex function f(x) =
xp, x ∈ (0,∞), p > 1, is ( n∑

k=1

λkxk

)p
≤

n∑
k=1

λkx
p
k .

Choosing
ak = λ

1/p
k xj ,

and writing ck = λ
1/q
k , the inequality becomes

n∑
k=1

akck ≤
( n∑
k=1

apk

)1/p
,

whenever
n∑
k=1

cqk = 1 .

Now, given b = (b1, · · · , bn), bk > 0, the numbers

ck =
bk
‖b‖q

satisfy ∑
k

cqk = 1 .

Therefore, ∑
k

ak
bk
‖b‖q

≤ ‖a‖p ,

and Hölder’s Inequality follows.

Recall that the Euclidean product (dot product) in Rn is given by

a · b =
n∑
k=1

akbk .

A slightly more general form of Hölder’s Inequality is
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Hölder’s Inequality. For p ≥ 1 and a, b ∈ Rn,

|a · b| ≤ ‖a‖p ‖b‖q ,
1

p
+

1

q
= 1 .

Moreover, the equality sign in this inequality holds if and only if either (a) one
of a or b is the zero vector or (b) both a and b are non-zero, their non-zero
components are of the same sign, and |bk|q = c|ak|p , k = 1, · · · , n, for some
positive number c.

Proof. Applying the first Hölder’s Inequality to |ak|, |bk| and using the triangle
inequality, ∣∣∣∣∣∑

k

akbk

∣∣∣∣∣ ≤∑
k

|ak||bk| ≤ ‖a‖p ‖b‖q .

To establish the equality case simply observe that when pj’s are non-zero numbers,
|p1 + · · ·+ pm| = |p1|+ · · ·+ |pm| if and only if all pj’s are of the same sign.

1.3 Minkowski’s Inequality

Minkowski’s Inequality. For a, b ∈ Rn and p ≥ 1,

‖a + b‖p ≤ ‖a‖p + ‖b‖p .

Moreover, the equality sign in this inequality holds if and only if either (a) a or
b is a zero vector or (b) b = ca for some c ≥ 0.

So equality holds if and only if the two non-zero vectors point to the same
direction or one of them is null. The case p = 1 is just the familiar triangle
inequality. The case p = 2 follows readily from Cauchy-Schwarz Inequality. In
the following proof we assume p > 1.
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Proof. By Hölder’s Inequality

‖a + b‖pp
=
∑
k

|ak + bk|p−1|ak + bk|

≤
∑
k

|ak + bk|p−1(|ak|+ |bk|)

=
∑
k

|ak + bk|p−1|ak|+
∑
k

|ak + bk|p−1|bk|

≤

(∑
k

|ak + bk|(p−1)q
)1/q(∑

k

|ak|p
)1/p

+

(∑
k

|ak + bk|(p−1)q
)1/q(∑

k

|bk|p
)1/p

= ‖a + b‖p/qp (‖a‖p + ‖b‖p) ,

where in the last step Hölder’s Inequality and (p− 1)q = p have been used. Now
Minkowski’s Inequality follows by absorbing the first factor to the left.

When one of a and b is a zero vector, the equality sign holds. Let us consider
the case where both vectors are non-zero. From what we have just done equality
in Minkowski’s Inequality holds if and only if the two inequality signs in the
above derivations are equality. When the second inequality sign becomes equality,
|ak + bk|p = c1|ak|p , |ak + bk|p = c2|bk|p for all k and c1, c2 > 0, which implies that
|bk| = c|ak|, k ≥ 1, for some c > 0. But then the first inequality becomes equality
implies that both ak and bk must be of the same sign.

1.4 Cauchy-Schwarz Inequality

Cauchy-Schwarz Inequality. For a,b ∈ Rn,

|a · b| ≤ ‖a‖2 ‖b‖2 ,

and equality sign in this inequality holds if and only if a and b are linearly de-
pendent.

First Proof. It is the special case of Hölder’s Inequality (p = 2).

Second Proof. It suffices to assume all ak, bk’s are non-negative and a 6= 0.
Consider the function

ϕ(t) =
∑
k

(akt− bk)2

= At2 −Bt+ C ,
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where
A = ‖a‖22, B = 2

∑
k

akbk , C = ‖b‖22 .

This function is always non-negative. Therefore, its discriminant ∆ = B2− 4AC
must be non-positive everywhere. This is precisely the Cauchy-Schwarz Inequal-
ity. Moreover, ϕ(t) = 0 has a real root t0 if and only if akt0 = bk for all k.

Third Proof. It is contained in the Lagrange Identity:( n∑
k=1

akbk

)2
=

n∑
k=1

a2k

n∑
j=1

b2j −
1

2

n∑
j,k=1

(
ajbk − akbj

)2
.

To prove this identity we play with the indices:(∑
j

a2j

)(∑
k

b2k

)
−
(∑

k

akbk

)2
=

(∑
j

a2j

)(∑
k

b2k

)
−
(∑

k

akbk
∑
j

ajbj

)
=

1

2

∑
j,k

(a2jb
2
k + a2kb

2
j)−

(∑
k

akbk

)(∑
j

ajbj

)
=

1

2

∑
j,k

(
a2jb

2
k − 2ajbkakbj + a2kb

2
j

)
=

1

2

∑
j,k

(ajbk − akbj)2 .

I leave it to you to prove that ajbk − akbj = 0 for all j, k implies b = ca for
some c ∈ R.

1.5 The Power Means Inequalities

In mathematics, a mean is a real-valued function F on Rn or its subset which
satisfies (a) F (a, a, · · · , a) = a , and (b) mink ak ≤ F (a) ≤ maxk ak .

Let λk, k = 1, · · · , n, satisfy
∑

k λk = 1, λk ∈ [0, 1]. For each t ∈ R, t >
0, a = (a1, · · · , an), ak ≥ 0, define the t-th power mean by

Mt(a) =
( n∑
k=1

λka
t
k

)1/t
.

When ak > 0 for all k, Mt(a) is well-defined for t ∈ (−∞, 0).

The power mean becomes the generalized arithmetic mean at t = 1 and the
generalized harmonic mean at t = −1. As we will see, it becomes the generalized
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geometric mean at the limit t = 0. Therefore, it inserts Mt(a), t ∈ (0, 1) , be-
tween the arithmetic and geometric means.

Power Means Inequality. For k = 1, · · · , n, let ak ∈ (0,∞) be distinct and
λk ∈ (0, 1) satisfying

∑n
k=1 λk = 1. Regarding Mt(a) as a function in t, we have

(a) Mt(a) is strictly increasing on (−∞, 0) and (0,∞) ,
(b)

lim
t→0

Mt(a) = aλ11 a
λ2
2 · · · aλnn , and

(c)
lim
t→∞

Mt(a) = max
k
ak , lim

t→−∞
Mt(a) = min

k
ak .

Thus, unless all ak’s are equal, Mt(a) is a strictly increasing, continuous func-
tion on R after defining M0(a) as in (b).

Proof. Step 1. We first show that for 0 < s < t, Ms(a) ≤Mt(a). Since a is fixed
throughout the proof we will simply use Mt to stand for Mt(a) below.

We take p = t/s and q = t/(t− s) and apply Hölder’s Inequality:∑
k

λka
s
k =

∑
k

λ
s/t
k askλ

(t−s)/t
k

≤
(∑

k

(
λ
s/t
k ask

)t/s)s/t (∑
k

(
λ
(t−s)/t
k

)t/(t−s))(t−s)/t
=

(∑
k

λka
t
k

)s/t
,

which implies Ms ≤ Mt for 0 < s < t. In case of equality, we have λka
t
k =

cλk, c > 0, for all k, whence all ak’s are the same. But this is impossible due to
our assumption.

Step 2. We claim:

lim
t→0+

Mt(a) = aλ11 a
λ2
2 · · · aλnn .
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For,

logMt =
1

t
log
(∑

k

λke
t log ak

)
=

1

t
log
(∑

k

λk
(
1 + t log ak + ◦(t)

)
=

1

t
log
(

1 + t
∑
k

λk log ak + ◦(t)
)

=
1

t

(
t
∑
k

λk log ak + ◦(t)
)

→
∑
k

λk log ak , as t→ 0+ ,

after using the expansions ez = 1 + z + ◦(z) and log(1 + z) = z + ◦(z) at z = 0.
Using the continuity of the exponential function, we get

lim
t→0+

Mt = elimt→0+ logMt

= e
∑

k λk log ak

= aλ11 · · · aλnn .

Step 3. We claim that for t < s < 0, Mt ≤ Ms. For, letting bk = 1/ak, k =
1, · · · , n, we have

Mt(a) =
1

M−t(b)
.

Therefore, using Step 1 for 0 < −s < −t,

Mt(a) =
1

M−t(b)

≤ 1

M−s(b)

= Ms(a) ,

and the claim follows. Note that this implies

lim
t→0−

Mt(a) = aλ11 · · · aλnn .

Step 4. We claim limt→∞Mt(a) = maxk ak. Let us assume a1 < a2 < · · · < an.
We have

an ≥
(∑

k

λka
t
k

)1/t
= an

(
n−1∑
k=1

λk
atk
atn

+ λn

)1/t

≥ anλ
1/t
n .
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The desired conclusion follows from the Sandwich rule.

Finally, arguing as in Step 3 we get limt→−∞Mt(a) = a1 . The proof of the
Power Means Inequalities is completed.

Some remarks are in order.

(a) It is reasonable to assume all λk’s are positive and less than one so that all
ak’s are involved in Mt(a).

(b) If some ak’s are equal, we may group them together. For instance, when
an−1 = an, we set a′1 = a1, · · · , a′n−1 = an−1 + an and µ1 = λ1, · · · , µn−1 =

λn−1 + λn in obvious notation. Then
∑n−1

k=1 µk = 1 and Mt(a’) = Mt(a). There-
fore, it is without loss of general to assume all ak’s are distinct.

(c) Under 0 ≤ a1 < a2 < · · · < an and λk ∈ (0, 1), k = 1, · · · , n, an examination
of the proof in Step 1 shows that Mt(a) is strictly increasing for t ∈ (0,∞).

1.6 Newton’s Inequalities

Let Sk(a), k = 0, 1, · · · , n be the k-th elementary symmetric function of a =
(a1, · · · , an). For instance,

S0(a) = 1,

S1(a) =
∑
k

ak = a1 + a2 + · · ·+ an ,

S2(a) =
∑

1≤j<k≤n

ajak ,

Sn(a) = a1 · · · an .

The normalized elementary symmetric functions σk’s are given by dividing Sk by
the number of elements in the summation. In general,

σk(a) =
Sk(a)(n

k

) .

Newton’s Inequalities. For a = (a1, · · · , an), ak > 0,

σk−1(a)σk+1(a) ≤ σ2
k(a), k = 1, 2, · · · , n− 1 .
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Equality sign holds in one of these inequalities if and only if all ak’s are equal.

The proof of these inequalities is based on the following amazing property.

Proposition. For a = (a1, · · · , an), n ≥ 2, there is some b = (b1, · · · , bn−1)
such that

σk(b) = σk(a) , k = 0, 1, · · · , n− 1 .

Proof. Define the polynomial of degree n by

P (x) = (x− a1)(x− a2) · · · (x− an)

= xn − S1(a)xn−1 + S2(a)xn−2 + · · ·+ (−1)n−1Sn−1(a)x+ (−1)nSn(a) .

P has nmany real roots (counting multiplicity). By Rolle’s Theorem its derivative
has n− 1 real roots (counting multiplicity). Denote them by b1, · · · , bn. We have

P ′(x)

n
= (x− b1)(x− b2) · · · (x− bn−1)

= xn−1 − S1(b)xn−2 + S2(b)xn−3 + · · ·+ (−1)n−1Sn−1(b) .

On the other hand, we have

P ′(x) = nxn−1 − (n− 1)S1(a)xn−2 + · · ·+ (−1)n−1Sn−1(a) .

By comparing the coefficients of these two polynomials,

n− k
n

Sk(a) = Sk(b), k = 0, 1, · · · , n− 1 ,

and the proposition follows after dividing both sides by
(n−1
k

)
.

Let us look at the first several Newton’s Inequalities (we omit the variable a):

•
n = 2, σ0σ2 ≤ σ2

1 ,

•
n = 3, σ0σ2 ≤ σ2

1 , σ1σ3 ≤ σ2
2 ,

•
n = 4, σ0σ2 ≤ σ2

1 , σ1σ3 ≤ σ2
2 , σ2σ4 ≤ σ2

3 ,
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•
n = 5, σ0σ2 ≤ σ2

1 , σ1σ3 ≤ σ2
2 , σ2σ4 ≤ σ2

3 , σ3σ5 ≤ σ2
4 .

The last member in these inequalities is

σn−2(a)σn(a) ≤ σ2
n−1(a) .

It is turned into

σ0(c)σ2(c) ≤ σ1(c)2 , c = (c1, · · · , cn), ck = 1/ak ,

after dividing both sides by (a1 · · · an)2. It has become the first inequality for the
variable c.

Now we can prove Newton’s Inequalities. When n = 2, the inequality is
nothing but the AM-GM Inequality

a1a2 ≤
(
a1 + a2

2

)2

.

Next, for n = 3, there are two inequalities. Our proposition shows that the first
inequality follows from the inequality in the previous case, that is, the inequality
above. Moreover, the second inequality can be reduced to the first one after re-
placing a by c. The strategy works for all n. After the (n− 1)-th case has been
established, the first (n − 1) inequalities in the n-th case are valid by applying
the proposition. The n-th inequality can be reduced to the first inequality for
c, ck = 1/ak .

To study the equality case, we may apply induction on n, the number of vari-
ables, in the statement:

σk−1(a)σk+1(a) = σ2
k(a) for some k ∈ {1, · · · , n− 1} implies that all ak’s are

equal.
Clearly it is valid at n = 2. In general, assuming that it holds at n − 1 we

consider the case of n variables. If on the contrary σk−1(a)σk+1(a) =
(
σk(a)

)2
for

some k ∈ {1, · · · , n− 1} where a satisfies aj < aj+1 for some j. By Rolle’s The-
orem the polynomial P ′(x) defined above admits a root in (aj, aj+1). Together
with other real roots, P ′(x) has at least two distinct roots. When k ≤ n − 2,
using the proposition above we have σk−1(b)σk+1(b) = σ2

k(b), contradicting the
induction hypothesis. On the other hand, the case k = n − 1 can be reduced to
the case k = 1 for the variable c. We have completed the proof of the equality
case for Newton’s Inequalities.
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The following inequality can be deduced from Newton’s Inequalities.

Maclaurin’s Inequalities. For a = (a1, · · · , an), ak > 0, k = 1, · · · , n,(
σk+1(a)

)1/(k+1) ≤
(
σk(a)

)1/k
, k = 1, · · · , n− 1 .

Moreover, equality sign holds for some k if and only if a1 = · · · = an.

These inequalities insert n− 2 many terms between the GM and AM.

Proposition. Let c0, c1, · · · , cn ∈ R, satisfying

ck ≤
1

2
(ck−1 + ck+1) , k = 1, · · · , n− 1 .

Then
ck − c0
k

≤ ck+1 − c0
k + 1

, 1 ≤ k ≤ n− 1 . (1.2)

Proof. When k = 1, (1.2) is the same as 2c1 ≤ c0 + c2. Assuming this inequality
holds at k − 1, that is,

kck−1 ≤ (k − 1)ck + c0 ,

we are going to establish it at k. Indeed, we have

2ck ≤ ck−1 + ck+1 ≤
k − 1

k
ck +

1

k
c0 + ck+1 ,

which implies
(k + 1)ck ≤ kck+1 + c0 ,

that is, (1.2) holds.

Now we prove Maclaurin’s Inequalities. Taking logarithm in Newton’s In-
equalities yields

log σk(a) ≥ 1

2

(
log σk−1(a) + log σk+1(a)

)
. (1.3)

Applying the proposition to

ck = − log σk(a) , k = 0, 1, · · · , n,

yields
− log σk(a)

k
=
ck − c0
k

≤ ck+1 − c0
k + 1

=
− log σk+1(a)

k + 1
,
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and Maclaurin’s Inequalities follow. The equality sign in Maclaurin’s Inequality
holds at some k means equality in (1.3). By the characterization of the equality
sign in Newton’s Inequalities we conclude that all a1 = · · · = an.

Recommended Reading: J.M. Steele, The Cauchy-Schwarz Master Class, An In-
troduction to the Art of Mathematical Inequalities, MAA Problem Book Series,
Cambridge University Press, 2008.


